
Multi-master replication for
Postgres

K. Knizhnik, C. Pan, S. Kelvich



I Design objectives
I Implementation/internals
I Tests
I Configuration
I Roadmap

Contents

2



Design objectives

3



We want:

I Fault-tolerance in easy way
I OLTP-style load
I Compatibility with standalone postgres
I Possibility to reuse as metadata storage for sharded cluster

Design objectives

4



Replication:

I Identical replicated data on all nodes
I Possibility to have local tables
I Writes allowed to any node

I => Easy to use
I => We need to take care about proper isolation

Design objectives

5



Transaction manager. We want:

I Avoid single point of failure.
I +: Spanner, Cockroach, Clock-SI
I —: Pg-XL, ...

I Avoid network communication for Read-Only transactions
I +: HANA, Spanner, Cockroach, Clock-SI
I —: Pg-XL, ...

Design objectives

6



Fault tolerance.

I Paxos. Distributed consensus, low level.
I Raft. Complete state-machine replication solution with failure

detector on timeouts and autorecovery. But all writes are
proxied to one node.

I 2PC. Blocks in case of node and coordinator failure. Postgres
already support 2pc.

I 3PC-like. Extra message between "P"and "C". 3PC, Paxos
commit, E3PC.

Design objectives

7



Summary.

I No performance penalty for reads.
I Tx can be issued to any node.
I No special actions required in case of failure.

Design objectives

8



github.com/postgrespro/postgres_cluster

I Patched version of Postgres 9.6
I Transaction Manager API + Deadlock detection API.
I Logical decoding of 2PC transactions.

I Mmts extension.
I Transaction Manager implementation (Clock-SI)
I Logical replication protocol/client
I Hooks on transaction commit and transforms it into 2PC.
I Bunch of bgworkers.

Implementation

9



Mmts uses logical replication/decoding.

I In-core support and extension by 2ndQuadrant.
I Very flexible:

I Can skip tables
I Replication between different versions
I Logical messages

Implementation

10



BE – backend, WS – Walsender, Arb – Arbiter, WR – Walreceiver

Implementation

11



Transaction Manager.

I Clock-SI algorithm (MS research)
I Make use of CSN instead of running lists. (we track xid-csn

correspondence in extension, but there is ongoing work to have
CSN in-core by Heikki and Alexander)

Implementation

12



DDL replication.

I Statement-based.
I Happily, postgres support 2PC for almost all DDL (alter enum

already fixed in -master)
I CREATE TABLE AS, CREATE MATVIEW, etc – tricky, mixes

DDL and DML.
I Temp tables are tricky – shouldn’t be replicted.
I Depends on environment (search_path, auth, etc.)

Implementation

13



Postgres compatibility.

I almost FULLY compatible with pg.
I 162 of 166 regressions tests pass as is.
I 1 test is using prepared statement inside CREATE TABLE AS

(CTA).
I 3 tests are using CTA(CTA(TEMP TABLE)).
I Some obvious way to abuse statement based replication, e.g.

write function that create table with name based on current
timestamp.

I Also sequences can add pain.

Implementation

14



Automatic recovery: normal work

Implementation

15



Automatic recovery: network split

Implementation

16



Automatic recovery: recovery process

Implementation

17



Automatic recovery: normal work again

Implementation

18



Not that hard:
I Install mmts extension
I Postgres:

I max_prepared_transactions
I wal_level = logical
I max_worker_processes, max_replication_slots,

max_wal_senders
I shared_preload_libraries = ’multimaster’

I Multimaster extension:
I multimaster.node_id = ...
I multimaster.conn_strings = ’...’

Configuration

19



We want:

I Test cluster liveness against network problems, restarts,
timeshifts, etc.

I Sound like Jepsen. But unfortunately it uses ssh on precreated
vm’s/servers. That’s okay for single test, but painful for CI.

I No sane way of testing network split with processes, i.e.
postgres TAP test framework is not helpful with that.

Testing

20



So we are using python unittest with docker.

I 3-5 containers is _way_ faster to start than vm’s.
I takes 10 seconds to compile mmts extension, init and start

cluster.
I failure injection via docker.exec (iptables, shift time, etc).
I compatible with Travis-CI.

Testing

21



I Testing itself: attach clients to each node of cluster and start
abusing nodes.

I Client: bank-like test case. Transfer money between accounts
with concurrent total balance calculation.

Testing

22



Failures injected:
I Node stop-start
I Node kill-start
I Node in network partition
I Edge network split (a.k.a. majority rings)
I Shift time
I Change clock speed on nodes with libfaketime *

* – not yet implemented.

Testing

23



Performance.

I Read-only tx speed is the same as in standalone postgres.
I Commit takes more time (two net roundtrips).
I Logical decoding slows down big transactions – but that

should be fixed, patch on commitfest.

Testing

24



I Release a public beta
I Try to commit twophase decoding patch to pg
I Try to commit transation manager patch to pg
I Raise discussion about replication/decoding of catalog content

Roadmap

25


